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Abstract—A higher-order shell theory, which includes the effects of transverse shear and transverse
normal strains, is developed for describing the behavior of composite shells. The equations, appli-
cable to laminated composite shells of arbitrary shape with arbitrary temperature and moisture
distributions. are established in tensor notation without reference to any particular coordinate
system. These equations are then written in terms of components with respect to an orthogonal
curvilincar coordinate system.

INTRODUCTION

The thermal properties, as well as their high specific stiffness and strength, have made fiber-
reinforced composites ideal for many acrospace applications where deformations induced
by temperature or moisture must be minimized. Onc such application is the support
structure of space telescope mirrors in which many of the structural elements, including the
mirrors themselves, are shells—essentially two-dimensional, thin, curved elements.

To utilize fully composite materials in such structures, a method to predict the defor-
mation of these elements duc to changes in temperature and moisture concentration must
be available. The significance of the problem has led to many studics of the hygrothermal
behavior of laminated composite shells. Most of the previous investigators were concerned
with circular cylinders and spheres, and analyzed the problem via elasticity theory, by
considering only one or two dimensions (e.g. see summaries by Takeuti and Naotake (1978)
and by Hyer et al. (1986)). Three-dimensional analyses have been applied to fiber-reinforced
laminated composite circular cylinders via shell theory by Stavsky and Smolash (1970),
Pao (1972), Whitney (1971), Whitney and Sun (1974), Padovan and Lestingi (1980), and
Hsu er al. (1981). In all but one of these analyses, either the effects of transverse normal
(¢3,) or transverse shear strains (¢, and &,,) were neglected, the apparent exception being
Whitney and Sun’s (1974) study of hygrothermal deformations of circular cylinders. (Sub-
scripts 1 and 2 denote directions parallel to the midsurface and subscript 3 denotes the
direction perpendicular to the midsurface, Fig. 1.)

The effects of transverse normal strain (or thickening strain) are important in laminated
composites, because, when heated, such materials tend to expand more in the direction
perpendicular to the plane of the laminate than in the directions parallel to this plane. The
importance of this “thickening” effect was discussed by Daugherty er al. (1971) in a

Fig. 1. Description of the shell.
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technical note in which they developed governing equations for the free thermal expuansion
of homogeneous, orthotropic shells, and by Whitney (1971) and Whitney and Sun (1973)
in their papers on composite circular cylinders. The importance of including transverse
shear strains in the analysis of hygrothermal deformations was pointed out by Whitney and
Sun (1974). Padovan and Lesting: (1980), and Hsu er a/. (1981).

Thus. it is well recognized that. to achieve good accuracy. both the transverse normal
strain and transverse shear strains must be included in the calculation of hygrothermal
stresses and strains of composite shells. Indeed. these strains have aiready been included in
elasticity and shell theory solutions of composite cylinders. However, corresponding analy-
ses. taking into account both the normal and transverse strains. have not yet been developed
for composite shells of general shape. Therefore. the first objective of this investigation was
to derive the governing equations, which include the effects of transverse normal and
transverse shear strains for laminated composite shells of arbitrary shape subjected to
arbitrary moisture and temperature changes. These results are presented in this paper.
The second objective was to study hygrothermal deformations of axisymmetric laminated
composite shells with and without a sandwich core. These results are described in Doxsee
and Springer (1989a.b).

PROBLEM STATEMENT

The deformation of a shell subjected to changes in temperature and moisture con-
centration is desired. The shell has a uniform thickness which is much smaller than the
shell's radii of curvature (Fig. 1), The shell may be composed of a single material or several
different materials bonded together in layers, cach layer having a constant thickness. Each
layer may be isotropic or orthotropic. The material properties are assumed to be lincarly
clastic and independent of stress, temperature, and moisture concentration. A consistent
combination of displacements, forces, and moments are specified along the edges of the
shell.

Initially, cach point of the shell is at some arbitrary, but known, temperature, and the
material at cach point has absorbed a certain known amount of moisture. The shell is
introduced to a new environment which causes known changes in the temperature and in
the moisture concentration. The changes in turn induce internal stresses in and deformation
of the shell. The displacement of each point of the shell is taken to be small compared to
the thickness.

The following problem is addressed : given the initial geometry of the shell, its material
propertics, the prescribed edge forces and displacements, and the temperature and moisture
concentration changes at every point of the shell, the displacements and stresses at every
point of the shell are required. For this problem, mathematical models of the system have
been obtained which are valid for generally shaped shells having arbitrary temperature and
moisture distributions.

GOVERNING EQUATIONS

In this section a higher-order theory of the hygrothermal behavior of composite shells
is developed. This shell theory includes both transverse normal and transverse shear strains
and accounts for the coupling between the transverse normal and the in-plane strains. The
governing equations are developed in tensor notation without reference to any particular
coordinate system. It is noted that some of the derivations are very long and, hence, could
not be included here. Readers interested in further details of the analysis are referred to the
thesis by Doxsce (1988). The governing equations written in terms of components with
respect to an orthogonal curvilinear coordinate system are given below.

As was done in many previous plate and shell theories, the variation of displacements
(U,. Uy, Uy) through the thickness of the shell is approximated as a polynomial in the
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Fig. 2. Displacement approximation.
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where U, and U, are the displacements of a point q in directions parallel to the midsurface,
and U, the displacement of the point in the direction perpendicular to the midsurface.§ The
corresponding displacements of point p on the midsurface closest to q are denoted u, u,,
and w. The parameters ff; and | ff; are midsurface “rotations™. These and the other f's
indicate the variations of in-plane displacements through the thickness of the shell. The p's
determine the “stretching of the normals™ and the transverse normal strain £5,, since

dU s
Ly = vdj‘ =+2zm+3 4 )

In order to account for transverse normal strain, the shell theory’s displacement approxi-
mation must include n's.

GEOMETRY AND DEFINITION

A shell of constant thickness ¢ is considered (Fig. 3), and the points of the shell and
its boundary are denoted by # and d4, respectively. The boundary of the shell is the union
of the upper surface, the lower surface, and the edge faces #. The set of points lying halfway
between the upper and lower surfaces is called the midsurfuce and is denoted &. The
outward unit vector normal to 04 is denoted v and the intersection of & and F is denoted
0.

Let g be any point in the shell. The point of the midsurface closest to q is denoted p
and is related to q via

where = is the distance between points p and q. and n(p) is the unit vector normal to the
midsurface at p (Fig. 4).

Any vector v defined at a point ¢ may be decomposed into two vectors, one vector
parallel to the midsurface at p, called the intrinsic part, and one vector normal to the

midsurface at p. called the extrinsic part (Fig. 4). The intrinsic part will be denoted v and

t Boldface indicates that the quantity is either a point in space or a vector.
1 Pre-subscripts are employed to differentiate different but similar quantities. Post-subscripts indicate the
components of vectors and tensors.
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the extrinsic part will be denoted vn so that v is a vector and ¢ a scalar. Then the decompo-
sition is written

<

v = ;'+z'n. 4)

Sccond-rank tensors are decomposed as follows. Suppose a second-rank tensor T is
the sum of dyads

T=u@Rv+t@w (5)

where u, v, t, and w are vectors and where ® is the tensor product operator (Gurtin, 1981).
Then T is decomposed as

T = (Utim) ® (V+on)+(t+m) ® (W+m)

=T+T@n+n®@T+T(n®n) 6)

where )

" i [ i ce ce ec¢
T=u®v+t@®w, T =ur+1w
e ci e <1 el <l

T = ru+wt. T = uv+1w.

The number of superscripts above T is equal to the rank of T, and each superscript e reduces
i ”©< < cc

the rank by one. Hence, T is a second-rank tensor, T and T are vectors, and T is a scalar.

Since any second-rank tensor may be written as a sum of dyads, the above results generalize
for all second-rank tensors. Analogous results hold for tensors of higher rank.

Two different double-dot products (: and --) will be used in deriving the governing

equations. They are defined as follows. Let C = t ® u ® v ® w be a fourth-rank tensor and

let T = a® b be a sccond-rank tensor. Then the two double-dot products of C with T are

C.T=0tQuRvedw):(a®@b)=(w-a)t'bu®@v
CT=(t®uRvy@w) - (a®b) =(w-a)(v-b)t®u. N



A higher-order theory of hygrothermal behavior of laminated composite shells 343

The double-dot product ( :) forms dot products between the pair of “inside™ vectors (w-a)
and the pair of “outside™ vectors (t-b), while the double-dot product (--) forms dot
products between the two pairs of inside vectors. These definitions of the double-dot product
generalize to tensors of other ranks.

KINEMATICS

Let q be a point in the shell and let p be its projection onto the midsurface as in eqn
(3). The displacement of q. denoted by U(q). is approximated by

N

U@ =v(p+ Y =".4(p) (8)

m=

where v(p) is the displacement of p; the second term of the sum (= ) is the linear variation
of displacement through the thickness: (z°,8) is the quadratic variation of displacement
through the thickness. and so on. The number N represents the “order™ of the displacement
approximation. The greater N is, the better eqn (8) approximates the actual deformation
of the shell. Figure 5 shows a cross-sectional view of a shell in its initial and displaced
positions. The point q and its projection p are displaced to the points q" and p’, respectively.

As described above, the vectors v and 6 can be divided into vectors parallel and
normal to the midsurface as

v=u+wn, 0=, B8+, m m=12 .., N (9)
3 ]
where u = vand B = 8 arc the vector components of v and 8 parallel to the midsurface

L4
(the intrinsic parts), and w = v and Nl = 0 are the magnitudes of the vector components
normal to the surface (the extrinsic parts). The quantitics u, w, 8, and .5 arc the dis-
placement measures of the shell theory. Taken together, eqns (8) and (9) are the vector
representation of eqns (1).

Some of the #'s and n’s may be assumed to be zero. For future reference, Ny is defined
to be the highest order of non-zero f's (i.e. ,,f = 0 for all m > Ny) and N, is the highest
order of non-zero n's (i.e. .7 = 0 for all m > N,). N is then taken to be the greater of Ny
and N,.

The three-dimensional linear strain at a point q is given by (Gurtin, 1984)

#(q) = {VU(@)+(VU(@)"] (10)
where the superscript T denotes the transpose, and V the gradient operator on three-

dimensional space. This gradient operator is related to the gradient operator on the mid-
surface V by (Steele, 1986 ; Doxsee, 1988)

V=,,~'-v+n®§:. (11)

displaced position

midsurface

initial position

Fig. 5. Displacements of points p and q from the initial position to points p’ and q’.
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In this equation, g '(z) is the inverse of the tensor u(z). which is defined by
p(z)=1-:b (12)

where 1 is the identity tensor on the midsurface and b = — Vn the curvature tensor of the
midsurface. For plates. b = 0.

By combining eqns (8)—(12). the strain at any point q can be expressed in terms of
strain measures defined on the midsurface. The resulting expression is

1 v v
&(q) = ;[ﬂ"'(r+ Y :’",,,x>+(}'T+ Y :”',,,KT>-;4"]
- m=1 m=}

+ --[u"-<w+ i :’"mx>®n+n® (w+m2:|:"'mx)-y']

m=1

B

Al
+<p+ > :"’,,,}.>n®n (13)
m=|

where y, k. @, ,X. p. and 4 are the strain measures. These strain measures are defined in
terms of the displacement measures as

Y= Vu — H'h, mkK = VmI; —n.'lb
w = l"+u.b+V“.' mx = (”I+I)(mk|),‘+(|——”I)"II‘.b+Vm’I
£ =, m':- = (’”+ I) (m v (l4)

with
wenB=0, =0

.
where V is defined to be the operator which gives the intrinsic part of the gradient on the
midsurface. The strain measures y and & are tensors of the sccond rank, @ and ,x are
vectors, and p and 4 are scalars. In eqn (13). the terms on the right-hand side are the
intrinsic (“in-plane’) part of the strain tensor (first line), the transverse shear strain (second
line), and the transverse normal strain (last line).

EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The equilibrium equations and boundary conditions are derived via the principle of
virtual work (Fung, 1965). Let 4 be a shell with tractions v * ¢ prescribed along part of its
boundary o4, < # and displacements prescribed along the other part 04, < F. (The
symbol < represents a subset.) The upper and lower surfaces are taken to be traction free.
Let U(q) be a virtual displacement of each point g€ 4 such that U is zero on ¢4, and is
arbitrary elsewhere. The principle of virtual work states that (Fung, 1965)

0=J‘ v-&'Udu+J‘ [—o:(VO)' +1-U]de (15)
.4, .4

where o is the stress tensor, and f the body force vector.

Virtual displacement measures, i, W, ,, . and 7 are defined to be related to the virtual
displacement U via the analog of eqns (8) and (9) (i.c. eqns (8) and (9) hold with bars over
the displacement and the displacement measures). Similarly, virtual strain measures 7. @,
K mX» and .4 are defined in terms of the virtual displacement measures via eqns (14) with
the actual strain measures and actual displacement measures in eqns (14) replaced by the
virtual strain measures and virtual displacement measures. respectively. By combining these
results with eqns (10) and (13). integrating eqn (15) through the thickness, and performing
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other algebraic manipulations, one obtains

- . N oo o~
0=j V'[N°E+Qﬁ'+ z (,,,I\!',,,ﬂ+,..5m'l)]ds
[V

m=|

m= i

N
+J‘ {~[N:fr+Q'c6+P§+ Y (,,,!\4:;?27+,,,S';i+,,,7'mi)]

N
+hut+gu+ Y (,,,m*,,,lf+,.,s,,,r])}da. (16)

m=1

The new terms appearing in this equation are defined below. The first integral is a line
integral along the intersection of ¢ and ¢ 4,, which is denoted ¢.4,. and the second integral

is a surface integral over . Also appearing in eqn (16) are the stress resultants

(02 . 2 .
—1, i . ‘ . .
N= up reds, M = JTTT AR gl ¢ &
B Ed J-t2
[ 2 . 2
te €
Q= pp'redz, LS = pptrezmdz
J -2 J-02
(12 (72
o L4
P= nodz, = no 2" dz (17
J o2 o 12

form = 1,2,..., N, where = is the normal coordinate, and g the determinant of g which
was defined by eyn (12). N is called the membrane stress resultant, Q the first transverse
shear stress resultant, | M the first stress resultant moment, and P the first transverse normal
stress resultant. M, S, and , T are called higher-order stress resultant moments, transverse
shear stress resultants, and transverse normal stress resultants, respectively. N and ,,M are
tensors of the second rank, Q and S are vectors, and P and 7 are scalars. The body force

resultants are defined as
RN 703
] = afdz, ,m= wfz"dz
-2 ~#2

(/R S
qzj‘ wfdz,

-2

|

[ e
J. uf 2" de. (18)
- ”2

N - P P
Finally, the prescribed truction resultants v-N, v-Q, v+, M, v-,.S are defined in terms of
the prescribed tractions via eqn (17) pre-dotted on both sides with v and with hats placed
over the stress resultants and stresses.

By making use of kinematical relations for virtual displacement measures and virtual
strain measures (the analog of eqns (14)), the virtual strain measures in eqn (16) are replaced
by expressions containing the virtual displacement measures and the gradients of the
virtual displacement measures. Then by applying the divergence theorem to the resulting
expression, and by noting that the virtual displacement measures are arbitrary everywhere
except where displacements are prescribed, equilibrium equations and boundary conditions
are obtained. The cquilibrium equations arc

0=V-Neb-Q+l
0=N:b+V-Q+g

0=V M-(-m)bo-,S—m,,_,S+,.m, S=Q
0=, M:b+V- S—nm, _ ,T+,5. oT=P (19)
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form = 1.2...., N, where (V) is an operator which is defined to give the intrinsic part of

the divergence on %, There is a one-to-one correspondence between each of the above

equations and the displacement measures adopted in the initial kinematic assumption, egn

(8). Equation (19), corresponds to u; i.c. if u is taken as a displacement measure, then eqn

(19), must be satisfied. Similarly, eqn (19). corresponds to w, eqn (19), corresponds to ,, 8,

form = 1.2..... N, and eqn (19), corresponds to . form = 1.2.. ... N,
As boundary conditions one must prescribe at each point of &%

either v*N or u
and either v-Q or w
and either v-,M or 8

and either v<,.8 or .» {20}

form=12.....N.

CONSTITUTIVE EQUATIONS

For the types of linearly elastic materials considered here, the stress-strain relation is
(Carlson, 1934 ; Tsai and Hahn, 1980)

¢=Cz+"0"D+0'D (21

where C is the clasticity tensor, *9 the change in specific moisture conceatration from some
rcﬁ.n.m.n value, ‘0 the change in temperature from some reference temperature, *® the
stress-moisture tensor, and ‘@ the stress~-teraperature tensor. These quantities are explained
in greater detail below,

The matcrmls under consideration are orthotrop:c and do not exhibit coupling be.twun

intrinsic stresses - and tmnsvcrag sheuar strain e, nor between transverse shear stress pt and

transverse normal strain £, ete. Thus many of the components of the elasticity tensor such
e e
as C and C are equal to zero,
The change in specific moisture concentration is the difference between the current
specific moisture concentration ¢ and a reference specific moisture concentration ¢,

") = ¢—c,. (22)
The specific moisture concentration at a point ¢ is defined by (Tsai and Hahn, 1980)

lim mass of moisture in AV 23)
e= I s 2
a0 mass of dry material in AV

where AV is the volume of a set of points surrounding q. The stress-moisture tensor "® is
symmetric and is related to the moisture-swelling tensor *a via

= —C-- (24)

Similarly, the stress—temperature tensor '@ is symmetric and is related to the thermal-
expansion tensor ‘a via

‘D= ~C-a (25)

Since problems for which the changes in temperature and moisture concentration are small
are being considered, the material propertics C, "a, and ‘a are taken to be independent of
temperature, moisture concentration, and stress.
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The distributions of moisture concentration change and temperature change through
the thickness are approximated by

gz Y 0P
m=0

Ny

‘B = ) .00 (26)

m=0

where* @and /0 are the specific moisture concentration measures and temperature measures
of the shell theory. respectively. These measures are chosen to make eqns (26) approximate
the actual distribution of temperature and moisture concentration as closely as possible. Ny
is the order number of the hygrothermal distribution approximation. In general. the greater
N, is, the better eqns (26) approximate the actual temperature distribution.

By taking account of the symmetries of ¢. &. and C. and the fact that the material
under consideration is orthotropic, the stress—strain relation, eqn (21). may be written as

i un m IICCee

o=C e+Cec+"0'®+0'®
6=2C-:
g=C-t+ Ce+"0"D+0'D (27)

where the i's and ¢'s above the terms indicate intrinsic and extrinsic parts, respectively. By
taking the intrinsic and extrinsic parts of eqn (13). substituting them into the appropriate
places in eqns (27) and then substituting these equations into eqns (17), the constitutive
cquations of the shell theory are obtained

hi

N= B y+,Dp+ Y (B x+DAi)+'N+'N

=t

N
mM = mB. ‘Y+,,,Dﬂ+ Z ((jvm)B' ' (j+m)x+(/+m)DUo-m)i)+f::M+,’nM
J=1

N
Q=,6w+) G x

j=1

Y :
S = G+ Z urmG e mX

=

N
P=,D"-y+,Fp+ Y (D" x+,FA)+"P+'P
J=1

N
mT = mD’r' 7+me+ Z (U’M'DT. : (j¢m)x+(/'+m)F(j+m)}-)+fnT+llnT (28)
J=1

form=12,...,N. Theterms B, ,.D...G.and . F(m = 1,2,..., N)arc the shell elasticitics

defined as

,,,B=J~’ up~ ' Cop~ ' mdz, ,,D=j up~'-C"d:

-2 —~t/2

12 eece 12 icie
,,,F=J uC dz, ,,,C=J- up~ ' C-p~'zmdz (29)

-2 -2

Each ,B is a fourth-rank tensor, each ,,D and ,,G a second-rank tensor, and each ,F a
scalar. Also appearing in eqns (28) are the stress—moisture resultants
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2

t 2 o 1
"N=J‘ "oup ' - d:. f',,.\l:f "up b - d:

-2 -2

P = j "utd d:, mT = f "utd - d: (30)
-t 2 -t o

for m=1,2,..., N. Similarly, the stress-temperature resultants ‘N. ,M, ‘P, and 4T are

defined via eqns (30) with superscript 4 replaced by superscript .

For theories in which vV, and ¥, are low numbers, it is necessary to modify some of
the above definitions for the elasticity, stress—moisture, and stress—temperature tensors. For
example. there are two sets of modifications required for a first-order transverse shear
deformation theory (i.e. Ny = 1 and N, = 0). First. since N, = 0 the definitions of ,B. N,
"N, “M. and ,M must be modified. Second since Ny = I, the definition of ;G must be
modified.

(1) Taking N, = 0 actually follows from the assumption that, since plates and shells
. . .. . Aad .
are thin. the transverse normal stress is often negligible (i.e. ¢ =0). In this case. the

R \
transverse normal strain ¢ is calculated from eqn (27),, and thus 5. p. and A are not
independent kinematic variables of the theory. Then the definition of B, ‘N, *N, %M. and

! M must be modified as follows. By solving eqn (27), (with 7 = 0) for ¢ and substituting
the result into eqn (27), one obtains

Y ST ST ¢ (31)
where
t "n (‘: IEC
C = cc®cc -
¢
" 1 . " hcc C , 4 u Icc *
d’) = (D - (l) cece (i) (Dncct' (32)
C C

1 1]

C. "D, '® are called the reduced intrinsic clasticity, stress-moisture, and stress-temperature
ensors, ru,pu..llvz,ly Then B, ‘N, *N, ,,,M, and ;M are defined by eqns (29), and (30) with

C,"®, and ‘® replaced by C, “®, and (f) respectively.

(2) For static equilibrium, the transverse shear stress o and strain ¢ distributions
through the thickness are roughly parabolic for symmetric laminates (Pagano and Hatfield,
1972). It follows from eqns (13) ind (14) that the kinematics of the shell (and plate) theory
reflect this fact only if Ny 2 3. Thus for “low order transverse shear deformation theories™
(i.c. theories which do not include the Kirchoff-Love assumption and for which N, < 3)
the definition of the shell elasticity tensor ,,G (eqn (29),) must be modified. Historically,
this modification has been accomplished in one of two different ways.

(a) The right-hand sidc of eqn (29), is multiplied by shear correction factors which
are chosen to make eqn (28), as accurate as possible for a specific problem. This technique
was introduced by Mindlin (1951) for plates, and is closely related to Timoshenko's beam
theory (Timoshenko, 1922). Many previous investigators have used this or a related tech-
nique.

(b) In addition to the kinematic assumptions (eqns (8) and (9))—or instead of these
assumptions—onc makes assumptions concerning the distribution of stresses and strains
through the thickness of the shell. Then a variational principle is employed to derive the
constitutive equations. This is the technique employed by Reissner (1945, 1947, 1972, 1979)
and Naghdi (1957, 1963, 1984).

For a first-order shear deformation theory, method (b) outlined above is chosen and
Naghdi's (1963) procedure adopted. Naghdi assumed that £ and @ vary quadratically
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through the thickness, and then employed the Hu-Washizu (Gurtin, 1984) variational

principle to obtain
N EATAEAY RS- :>: T
oG = (6)(8)[.,2“‘ C-u [l_<h/2 ] d-. (33

For a homogeneous material. this definition is equivalent to employing a shear correction
coefficient of 5/6.

The derivation of the governing equations of the shell theories under investigation is
now complete. The governing equations form a set of linear, partial differential equations:

(i) displacement measure—strain measure (kinematic) relations (eqns (14)).
(ii) equilibrium equations (eqns (19)).

(iil) stress-resultant—strain measure (constitutive) relations (eqns (28)). and
(iv) subject to the boundary conditions (eqns (20)).

Once the solution to this set of equations has been obtained. one determines at any point
in the shell the displacement from eqn (8), the strain from eqn (13). and the stress from
eqn (27). The accuracy of these equations depends on the number of terms included in
the initial displacement approximation (eqn (8)), and in the temperature and moisture
distribution approximations (eqn (26)). The accuracy also depends on the approximations
made when evaluating the constitutive coctlicients (eqn (29)), as discussed in the following
section.

GOVERNING EQUATIONS IN LINES OF CURVATURE COORDINATES

In order to obtain numerical solutions to the governing equations derived in the
previous chapter, it is necessary to express these equations in component form. For con-
venience, a line of curvature coordinate system (xy, X, 2) is adopted associated with the
midsurface (Fig. 6) (Kraus, 1967). Curves of constant x, coincide with curves of principal
curvature 1/R, of the midsurface, and curves of constant x, coincide with curves of principal
curvature I/R,. The square of the length of a differential line segment on the midsurface of
the shell is given by

(dN? = A7 (dx )+ A3 (dvy)? (34)

where 4, and A, are scalars which are functions of position (x|, x,) on the midsurface. The
four quantities 4,, 4, R,, and R, define the shape of the shell and are not independent
(Kraus, 1967).

At each point (x,, x,) of the midsurfuce of the shell a4 set of basis unit vectors (t,, t,, n)
is defined such that t, is in the direction of increasing x|, t, is in the direction of increasing
Xy, and n = t; x t, is normal to the midsurfiace. As above, - is the coordinate in the direction
of n.

The governing equations are listed in Tables 1-10 in terms of physical components in

Fig. 6. Lines of curvature coordinates.



350 L. E. Doxske, Jr.

Table . Displacement in terms of  dis-
placement measures expressed in physical
components in lines of curvature coordinates

¥

Udvpxnz) =ulvx)= Y T fly vy
LR
‘.

Cilxoxas) = wix )+ S A (R
m= |

Subscript x takes on values 1 and 2.

Table 2. Stram in terms of struin measures expressed in physical components in lines
of curvature coordinates

. y . | .
vt L Tk | e et § TN
( o m:l ’ l +z Rl‘ " m: 1 "

¥ is the greater of V. N, Subscripts x and ff take on values | and 2 but there is
no summation over repeated subscripts,

Table 3. Strain measures in terms of displicement measures
expressed in physical components in lines of curvature coor-
dinates

i

P =
=
Ta =
" u, ,
w, =,/ R, 1,
P=
!
K= "“I ) -
l Ay -l
2Ky = wlfas N
i ,-lz[ Fut g, /'] R
1 Ay
miy2 = 4, [m/‘:,l_ /':' nﬂl]

wBe s

wls = (+ 1) gy B, = (1 ~m1) R, T4,

A =)

The comma notation (), denotes differentiation with
respect to the coordinate x,. Subscript x takes on values 1 and
2 but there is no summation over repeated subscripts.
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Table 4. Stress resultants in terms of stresses expressed in
physical components in lines of curvature coordinates

N ='[ ) (1 +2 R)o,dz
Q.= J ’ (1+z/R)e,,dz

P=f T +ZR M+ Ryad:

oy = f (1+zR)70,,d:

& = R.and R, = R,. Subscripts z and f take on
values 1 and 2 but there is no summation over repeated
subscripts.

Table 5. Body force resultants in terms of body forces
expressed i physical components in lines of curvature
coordinates

/,&y (43R +2/R ) f.dz
tI=J“.'(l+:/R,)(l+:/R:)f.d:

o, =j T (L3R 43R f.7dz

s =I (I+z/R)(A+2/Ry) f127d:

-1

Subscript 2 takes on values 1 and 2.

Table 6. Equilibrium eyquations expressed in physical components in lines of curvature coordinates

|
=,"{"“[H N H AN s+ A 2NV = Ny ]+Q'

! , 0
0= ;{I—A';[(A,N::).:+(.-I;N,_.)..+A_..,x\_.,~—.4.‘:‘\nl+ r. tl:

N. Vi,
0=~ﬂ~((l(_))+(lQ)|< +R)+q
| 2

] .S
0= A [(As M)+ (A M)+ Ay ‘,_M..——/l.‘,,M..]+(l—m) J =M S+,
s

O-T*-[(l,,,,M..) s (A M) A WM —.-l..;,,,M”]+(l—m)':'k'i—m,,_,“S:-}-,/n:

0= (A S 1)+ (A, WSl LTINS T+
s y I EAIIE IR T+.s
f‘f‘ [ " 1 ( 1 - R| Rv "'(MA‘

The comma notation (), denotes differentiation with respect to the coordinate x,.



352 Table 7. Boundary conditions expressed in
physical components in lines of curvature
coordinates

Must prescribe at each point of the bound-
ary:

either N, or u,
and either N,, or u,
and either  Q, or w
and etther M, or 8,
and either M, or 8.
and either S, or 7

form = 1,2..... N.Subscript vdenotes the
component in the direction normal to the
boundary of the shell, and subscript 4
denotes the component in the direction
tangent to the boundary of the shell.

Table 8. Constitutive equations expressed in physical components in lines of curvature
coordinates

N
N = oBuyarsn+ oD yp+ Z (Buys Ko+ D A) + "N+ "Ny

1=l

v
Q. = oGypon + Z G X

j=i
v
P = 0".1“/'-11‘0’0':/’ + .\_, (:’)-14 K+ :F;’.-) + PP

=1

¥
Mo = B st 4D ap + X Com v Batis i s oKy F m s nD g im s ph) + M+ LMy

j~1

hi
mS. e m(;./r"'/l + 2_ im -,;(;./r<.n ki
=y
wl = WDyt mbp + }_, CGos 6D pim e Wt im v i om .,)}J +2T+T

=1

Summution from | 1o 2 is implied by repeited Greek subscripts.

Table 9. Elasticities expressed in physical components in lines
of curvature coordinates

memo = Bou= m(‘lﬂ',-d S YN IlCutyd+ Kisim,s :n(-z)m*' T
. ! .
i = W Copii + B b Casna

Gt = U = Gy ¥ g im s 0 Catpy+ Kagime n,Caspy + 7+

. Lo . ! .
wF = mC|\n+( 5+ "‘)mnnc ¥ 5o menCnin
! 2

R R RR,™?
where
|
R:. - “I Ir 1=0=
'/14’ = | 1 .
- = =2
R, K fx=3d=2
0. otherwise
1 {1 I .
R,(R,—-R,) fa=d=1
K= 1l I
o e~ 1 =0=72
(R: RI). ifa=0=2

otherwise,

The definition of ,C,,, is given in eqns (36). The Greek
subscripts take on values 1 and 2 but there is no summation over
repeated subscripts. Also 8, = R,and R, = R,.
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Table 10. Stress-moisture resultants expressed in physical components in lines of curvature coordinates

I I
h.v,,=7,07,®,,+<—k—100+ 9) 0“’+<R ':9+.9) "D, + F‘;G",(D,,
I
L-‘".a-_-’('!efnow'*(k o+4 0)'"*”0"+(R 104‘":0)«-;:';0:1!4’ ﬁ‘@{’tnu‘:@xu
P = K00+ N0+ L+L WD+ 0+ —l— : "0+ ! koo
oY 0¥33 ] R| R: I 1% 3 M R| R RRO ¥
o1 . |
) h| n —"—h* H 1
+[(R. + :) 0+ RR '(:I'(D"+R.Rz Y040,
AT =400+ 10+ ! l " "Dy, +| A0+ —l—+L "U+L"U 'O
-~ ;3N RI s n m+ 1133 : RI R: 1 RIR:O (m+2)¥21

Lot l !
+[<RI + :)~0+R R |0:|(,,,‘“(D|\+R R‘h”(nyll:m.‘.‘

R, = R,and R, = R,. Subscripts x and f§ take on values 1 and 2 but there is no summation over repeated
subscripts. The definition of 2®, is given in eqn (36).

lines of curvature coordinates. The derivation of the component form of the equations from
the tensor form is lengthy but straightforward, and is given in Doxsee (1988).

The terms with subscripts appearing in Tables 1-10 are the physical components off
the vectors and tensors introduced previously. For example, the displacement vector U has
the representation

U= Ut +Ust,+Un. (35)

Analogous results hold for tensors.

In Tables 3 and 6, commas denote differentiation with respect to a coordinate. In Table
8. summation over | and 2 is implied by the repeated Greek subscripts. In Tables 9 and 10,
the terms ,,Curr m®,, and @, appear and are defined by

(/2
P T
mCljkI = Ci/kl- d:
J ol
*1,2
h —- h o
m(bl/ - (Dl/- d-
Jor2
(f12
7 — 1 .
m(Du - ‘bu- - (36)
J-#2

where subscripts i, j, k. and / each take on the values 1, 2, and 3.

The elasticities listed in Table 9 are approximations of thosec defined in eqns (29). The
components of the elasticity tensors B and ,,G can be expressed as an infinite sum (or
expansion) in powers of the small number ¢/ R, where ¢ is the thickness and R a representative
radius of curvature of the shell (Naghdi, 1963). N, is defined to be the power of (¢/R) in
the last term kept in this expansion. Table 9 gives the first three terms of this expaasion,
which correspond to (#/R)®, (¢+/R)' and (¢/R)*. The definitions of the stress-moisture and
stress-temperature resultants in Table 10 contain terms of order (¢/R)® and (¢/R)'. This is
acceptable as long as N = | or 2. However, if N = 0, then for consistency, only the terms
of order (¢/R)" should be included in the definitions of the stress—-moisture and stress-
temperature resultants. The same holds truc for the definitions of the applied traction
resultants (Tables 4 and 7) and the body force resultants (Table 5). Also, in the definitions
of the stress-moisture and stress-temperature resultants (Table 10) constant, linear, and
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quadratic variation of temperature and moisture changes through the thickness of the shell
have been included (i.e. N, = 2 in eqns (26)).

The numbers ¥y, V,. V,, and N determine the accuracy of the shell theory. Numerical
examples, which demonstrate the differences between shell theories based on various values
of some of these numbers. are given in Doxsee and Springer (1989a).

CONCLUDING REMARKS

The equations developed in this paper may be used to analyze the hygrothermal
behavior of laminated composite shells. A numerical procedure suitable for obtaining
solutions for shells of revolution subjected to axisymmetric changes in temperature and
moisture is presented in Doxsee and Springer (1989a). Assessments of the accuracy of the
analysis and the numerical procedure are given in Doxsee and Springer (1989a.b).
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